981 resultados para electron microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.